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Abstract: Arctic sea ice extent has been utilized to monitor sea ice changes since the late 1970s using
remotely sensed sea ice data derived from passive microwave (PM) sensors. a 15% sea ice concentration
threshold value has been used traditionally when computing sea ice extent (SIE), although other
threshold values have been employed. Does the rapid depletion of Arctic sea ice potentially alter the
basic characteristics of Arctic ice extent? In this paper, we explore whether and how the statistical
characteristics of Arctic sea ice have changed during the satellite data record period of 1979–2017 and
examine the sensitivity of sea ice extents and their decadal trends to sea ice concentration threshold
values. Threshold choice can affect the timing of annual SIE minimums: a threshold choice as low
as 30% can change the timing to August instead of September. Threshold choice impacts the value
of annual SIE minimums: in particular, changing the threshold from 15% to 35% can change the
annual SIE by more than 10% in magnitude. Monthly SIE data distributions are seasonally dependent.
Although little impact was seen for threshold choice on data distributions during annual minimum
times (August and September), there is a strong impact in May. Threshold choices were not found
to impact the choice of optimal statistical models characterizing annual minimum SIE time series.
However, the first ice-free Arctic summer year (FIASY) estimates are impacted; higher threshold
values produce earlier FIASY estimates and, more notably, FIASY estimates amongst all considered
models are more consistent. This analysis suggests that some of the threshold choice impacts to SIE
trends may actually be the result of biased data due to surface melt. Given that the rapid Arctic sea
ice depletion appears to have statistically changed SIE characteristics, particularly in the summer
months, a more extensive investigation to verify surface melt impacts on this data set is warranted.

Keywords: arctic; sea ice; decadal trend; passive microwave sensors; sea ice concentration; sea
ice extent

1. Introduction

Arctic sea ice coverage has been monitored since the late 1970s by using remotely sensed sea ice
data derived from passive microwave (PM) sensors. a threshold value of 15% sea ice concentration
(SIC) has been used traditionally when computing the sea ice extent (SIE) [1]. This choice of threshold
is associated with the accuracy of sea ice concentration retrieval algorithms and based on the studies
that the ice extent is well represented by the choice of 15% SIC threshold (e.g., [2–4]). On regional
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scales, ice edges, as observed in satellite data, represented by 5% and 15% thresholds, have been shown
to be fairly coherent [4].

Using synthetic aperture radar (SAR) and ship-based observations, Meier and Notz [5] have
shown that SIC retrieval accuracy can be as poor as ± 20% in summer at the ice edge. The Copernicus
Climate Change Service (C3S) uses the ice concentration threshold of 30% to define the ice extent [6].
Ji et al. [7] has recommended using 30% as the SIC threshold during summer for SIE calculation based
on Special Sensor Microwave Imager/Sounder (SSMIS) data. They also point out the discrepancy in the
SIC threshold values used in various ice products.

There are two approaches to defining climatological ice extents using satellite-based SIC data.
First, one can define the ice edge using a median edge—defined by the grid cells that have a 50%
or higher probability of ice occurring at 15% (or whatever threshold is chosen) concentration or
greater for the climate normal period. The climate normal period is defined by World Meteorological
Organization (WMO) as the most recent three complete decades, namely, 1981–2010, at the present
time. So, using the median approach, at least 15 of these 30 years would need to have ice (above the
threshold concentration) to be included in the climatological edge. Alternatively, one can define the ice
edge by simply averaging the monthly SIC concentration fields over the 30 years and then thresholding
by the defined concentration. Fetterer et al. [8] argued that the median approach is a more meaningful
representation of ice edge compared to the climatological edge because the location of the edge varies
considerably from year to year causing the climatological edge to be unlikely to resemble any typical
ice edge. The National Snow and Ice Data Center (NSIDC) Sea Ice Index using the median approach is
a widely used product for monitoring Arctic sea ice coverage changes [8].

However, Arctic sea ice loss has accelerated in the last half of the satellite data record (e.g., [9]) and
multi-year ice is depleting faster than ever [10,11]. This evolution of these changes brings up a number
of scientific questions: Is 15% truly a robust threshold choice to represent sea ice extent decadal trends?
Is the remaining sea ice (SIE with SIC of 0–N%, where N% is the SIC threshold) statistically significant
to potentially alter the characteristics of distributions? With the potential of the Arctic becoming nearly
ice-free, represented by the Arctic sea ice extent falling below 1 mil square kilometers, in the coming
decades, what is the sensitivity of the statistical first ice-free Arctic summer year (FIASY) projections to
sea ice edge thresholds? Ultimately, the question we strive to answer is: does the choice of threshold
have an impact on Arctic sea ice extent decadal trends?

Answering these questions is inhibited by challenges. First, validation data for total sea ice extent
is rarely available. Validation of PM sea ice fields is usually done by high-resolution satellite imagery,
but these only cover part of the ice cover due to clouds (visible/infrared) [12] or limited spatial coverage
(SAR) [4,13]. Secondly, the character of the ice edge can vary widely, even over short distances—from
very sharp to very dispersed [4,12,13]. Prior to an extensive investigation, it is beneficial to first
examine whether the rapid Arctic sea ice depletion has statistically changed the ice edge characteristics.
In this study, we use the National Oceanic and Atmospheric Administration (NOAA)/NSIDC sea
ice concentration climate data record to examine how threshold choice may impact the timing of
annual SIE minimums and maximums, magnitudes of these extrema, data distributions, and projected
FIASY values.

2. Materials and Methods

Monthly sea ice concentration fields from the NOAA and the National Snow and Ice Data
Center (NSIDC) Climate Data Record (CDR) [14] are utilized to derive the monthly sea ice extent
time series. The CDR is a long-term, consistent, satellite-based passive microwave record of sea
ice concentration [14]. The CDR product leverages two well-established concentration algorithms,
the NASA Team (NT; [15]) and Bootstrap (BT; [16]). The NT and BT sea ice concentration algorithms
were both developed by the NASA Goddard Space Flight Center (GSFC). Description and verification
of the data set can be found in Peng et al. (2013) and Meier et al. (2014), respectively [17,18]. The data
files used in this study are from the version v03r01 [14].
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The CDR data files include two primary sea ice concentration parameters: the CDR concentration
and similar Goddard Merged concentration. Additionally, two GSFC-derived SIC fields are also
included in each CDR data file: GSFC-derived NT and BT, respectively. The current CDR concentration
spans only from year 1987 to 2017 while the Goddard Merged concentration extends back to 1978.
To utilize all the possible satellite data records, we will therefore use the Goddard Merged concentration
fields. The Goddard Merged concentration is derived using the same processing algorithm as
that for CDR concentration but uses manually quality-controlled GSFC-derived NT and BT sea
ice concentrations as input data sources (Meier et al. 2014). Manual quality control means sea
ice concentration values may be modified manually at the cell level by examining concentration
distributions. The approach is subjective and not reproducible.

The sea ice extent is the area within the contour of a certain concentration threshold, τ. It is
calculated as

SIE =
n∑

i=1

ICi ∗Ai (1)

where Ai is the area of pixel i and n is the number of pixels. a pixel i is considered ice covered or not,
as defined by

ICi =

{
1 i f SICi ≥ τ
0 i f SICi < τ

(2)

where SICi is the sea ice concentration of the ith pixel.
Figure 1 illustrates the impact of the choice of concentration threshold. Here, the SIC values have

been binned to show the potential SIE contours. The white areas comprise the ice pack with SIC > 55%
while the increasing shades of blue show what additional pixels would be included in the SIE if lower
thresholds were chosen. In Figure 1a the entire Arctic region is shown, while Figure 1b zooms into the
much-studied Chukchi Sea subregion where it is seen that the contours are fairly coherent in June 2017.
Figure 1c gives a close-up view of the Hudson Bay subregion, where the contours are less coherent,
to demonstrate the impact of threshold choice in this situation.

For analysis in this study, the sea ice extent time series has been computed using the sea ice
concentration threshold values from 5% to 85% at 5% increments. The sensitivity of the decadal
trends of the Arctic sea ice extents to concentration thresholds is examined, as well as that of statistical
projections of the FIASY. The FIASY is estimated as the whole number year where the Arctic sea ice
extent falls below 1 mil square kilometers. If the projected value falls later than October 1 in the year,
the FIASY refers to the following summer.
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Figure 1. Binned June 2017 sea ice concentration (SIC) observations for the (a) Arctic region, (b) 
Chukchi Sea, and (c) Hudson Bay. The upper red dashed box in (a) indicates the Chukchi Sea 
subregion displayed in (b) and the lower red dashed box highlights the Hudson Bay subregion 
displayed in (c). 
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Statistical tests are performed to determine whether data derived from differing thresholds come 
from the same distributions. Finally, we perform statistical model calibration and selection with data 
from differing thresholds to determine the impact of threshold choice on optimal model selection 
along with FIASY estimates. 

3.1. Timing of Annual SIE Minimums and Maximums 

Using the monthly aggregated time series, annual minimums and maximums were identified 
along with the month in which those occur. 

For thresholds between 5% and 25%, the annual SIE minimum occurs in September for every 
year analyzed: 1979–2017. For thresholds between 30% and 85%, there is at least one year of the time 
series where the annual SIE minimum occurs in August. The pattern that this occurs is monotonic, 
meaning that if a given threshold has the annual minimum in August for a given year, all larger 
thresholds also have the annual minimum in August. As the threshold increases, this becomes more 
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Figure 1. Binned June 2017 sea ice concentration (SIC) observations for the (a) Arctic region,
(b) Chukchi Sea, and (c) Hudson Bay. The upper red dashed box in (a) indicates the Chukchi
Sea subregion displayed in (b) and the lower red dashed box highlights the Hudson Bay subregion
displayed in (c).

3. Results

This paper seeks to answer the question: does the choice of threshold have an impact on
Arctic annual sea ice extent decadal trends? To address this, a number of supporting analyses are
performed. First, we examine the timing of annual SIE minimums and maximums: do they occur
in the same month every year, regardless of threshold choice? Then we evaluate the time series of
annual SIE minimums and maximums: does threshold choice impact the magnitude of these values?
Statistical tests are performed to determine whether data derived from differing thresholds come from
the same distributions. Finally, we perform statistical model calibration and selection with data from
differing thresholds to determine the impact of threshold choice on optimal model selection along with
FIASY estimates.

3.1. Timing of Annual SIE Minimums and Maximums

Using the monthly aggregated time series, annual minimums and maximums were identified
along with the month in which those occur.

For thresholds between 5% and 25%, the annual SIE minimum occurs in September for every
year analyzed: 1979–2017. For thresholds between 30% and 85%, there is at least one year of the time
series where the annual SIE minimum occurs in August. The pattern that this occurs is monotonic,
meaning that if a given threshold has the annual minimum in August for a given year, all larger
thresholds also have the annual minimum in August. As the threshold increases, this becomes more
common to the point where, at the 85% threshold, 24 out of 39 years have an annual minimum in
August rather than September.

Behavior for annual maximums is quite different than for annual minimums. For all thresholds
and years examined, the maximum always occurs in either February or March. Sometimes as the
threshold increases, the annual maximum month switches between February and March (e.g., 1992).
Other times, with an increasing threshold, the maximum month switches from March to February (e.g.,
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1979), but then it may also move oppositely, from February to March (e.g., 1981). These changes in the
month of annual maximum can occur with thresholds as low as 5% and 10% (e.g., 1998).

There are several possible reasons why the annual SIE minimum occurs in August rather than
September with increasing thresholds. One explanation is temperature based: conditions in September
were more conducive for freezing in September rather than continuing to melt. That is, September was
colder in that year. As the threshold increases, and data are excluded from the SIE calculation,
the magnitude of the SIE value decreases. Because the occurrence of annual SIE minimum in August is
only seen in higher thresholds (30–85%), this indicates that less of the ice pack was melting during these
years. Freeze up starts in August in the high Arctic, where concentrations stay higher. So, shifting the
threshold higher brings the ice edge into higher, colder latitudes, where the concentration begins
increasing sooner.

Another explanation is based upon the accuracy of passive microwave SIC retrievals under surface
melt conditions. Surface melt results in SIC values that are biased low due to the retrieval algorithms
falsely identifying surface pools as open water. With an extreme low SIC bias along with higher
threshold values used to calculate SIE, this could result in SIE being biased low as well. The minimum
may be shifting to August with increasing thresholds because freeze up has begun in the higher latitude
regions, eliminating surface melt and the frequency of low-biased SIC values which exhibited as false
annual minimum SIE at the peak of surface melt in August.

3.2. Magnitudes of Annual SIE Minimums and Maximums

Using the 15% threshold to calculate a baseline SIE annual minimum/maximum time series,
we calculate the anomaly as compared to other thresholds. These are presented as percentages in
Figure 2. For example, where SIE_Min15(t) is the time series of annual SIE minimum time series using
the 15% threshold, the anomalies were calculated as

AnomY(t) = 100 × (SIE_MinY(t) − SIE_Min15(t))/SIE_Min15(t) (3)

where Y is a different threshold choice.
In Figure 2a it is seen that reducing the threshold to 5% can increase the annual SIE minimum

by up to 4%, while increasing the threshold to 25% will decrease the SIE minimum by potentially
6%. Increasing the threshold to 55% can decrease the SIE minimum by 25%. To a much lesser degree,
threshold choice also has an impact on annual SIE maximum values (Figure 2b). Decreasing the
threshold from 15% to 5% leads to between 1% and 2% increase in the annual SIE maximum,
while increasing the threshold to 25% may decrease annual SIE maximum by about 2%. Over the course
of the available time series, increasing the threshold to 55% can decrease the annual SIE maximum by
nearly 9%.

It is valuable to consider whether threshold choice impacts the magnitude of SIE values, and hence
the shape of the annual minimum and maximum time series curves, because it can imply that different
statistical models may better fit differently shaped curves. There are cases when one threshold choice
indicates that the annual minimum is decreasing year over year while another feasible threshold choice
indicates that the annual minimum is stable or increasing. For instance, the threshold choice of 10%
indicates the annual SIE minimum increases by 17,221 km2 between 1986 and 1987, while the threshold
choice of 20% indicates it decreases by 20,040 km2. This difference in slope indicates that it is possible
that different statistical models of the annual SIE minimum time series could be needed depending on
the threshold choice used to generate the SIE time series. This will be explored further in Section 3.4.
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Figure 2. Percent change in sea ice extent (SIE) with varying threshold choices as compared to SIE
calculated with the 15% threshold for annual SIE (a) minimums and (b) maximums.
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3.3. Statistical Comparison of Data Distributions

Two-sample Kolmogorov–Smirnov tests were performed to determine whether data derived
from differing thresholds come from the same statistical distributions. The two-sample version of this
nonparametric test quantifies the distance between the empirical distribution functions and serves as
a useful way to compare two samples as it takes into account differences in both location and shape of
the distributions. Figure 3 illustrates the shapes of the histograms for a selection of threshold choices
(5%, 15%, 25%, 35%, 45%, and 55%). Systematic shifts toward slightly lower sea ice extent values
can be seen with increasing thresholds, which is intuitive as fewer cells are included in the extent
calculation. Nearly all tests showed similarity in distributions with thresholds within 5% for every
month. Some similarities were broader than others, depending on both the threshold choice and
month evaluated. As shown in Figure 4, September stands out as a month where the distributions are
similar for a wide range of threshold choice, while May has the narrowest band of similarity between
distributions for different thresholds. Table A1 in the Appendix A lists the details of the threshold
values where no significant difference was found between distributions.
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thresholds (colored lines, in %).
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Figure 4. The width of the threshold range for which data comes from the same distribution, as evaluated
by two-sample Kolmogorov–Smirnov tests, both as a function of month and threshold. For example,
when looking at May, the distribution of SIE values resulting from a 10% threshold choice is not
significantly different from distributions of SIE values resulting from 5% or 15% threshold choices.
Thus, the width of the range for which data comes from the same distribution is 10.

There is a strong dependence on seasonality when analyzing whether SIE data, as calculated
with different thresholds, come from the same statistical distribution. In September, when annual
minimums typically occur, the choice is less critical. Here, a wide range of threshold choices, in fact
covering all possible reasonable values as indicated by the literature, yield no significant difference
in the distribution of the SIE data. Upon examination of the shapes of the distributions in Figure 3,
this may be attributed to the comparatively large spread of values in September. The lack of importance
of threshold choice in September is also consistent with the timing of freeze up, which results in a sharp
ice edge pattern as surface melt ceases.

However, the choice of threshold is most critical in May, where changing the threshold by just
10% could yield data with a different distribution shape. a possible explanation here is that at this
time the ice is retreating, resulting in variability in the sea outside of the Arctic Ocean. But at the
same time there is not yet ice loss within the Arctic Ocean, and thus little variability occurring there.
Figure 3 shows that the shape of the distributions for May are narrowly spread and with sharp peaks
in comparison to other months, consistent with the resultant sensitivity to threshold choice.

3.4. Statistical Model Fitting and Selection Using SIE Data with Differing Thresholds

Similar to the analysis done in Peng et al. (2018), where a threshold choice of 15% was used,
we perform statistical model calibration and selection with data from SIE annual minimums derived
from differing thresholds to determine the impact of threshold choice on optimal model selection along
with the FIASY [19]. Using an updated version of the same long-term, consistent time series of sea
ice data, we compare six commonly used statistical models for this type of application. Models are
optimized over various segments of the full time series: the first 30 years (1979–2008), all years
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(1979–2017), and the last 30 years (1988–2017). Following optimization, AICc (Akaike information
criterion corrected for small sample size) values are calculated and used to derive the associated
W-Akaike weights. The AICc is a statistically-based means of model selection that estimates the quality
of each model in comparison to other models for a given data set, taking into account the number of
model parameters and data set sample size. Given a set of AICc values, the optimal model of the
sample has the minimum value. W-Akaike weights may be interpreted as the probability that the
model is the best of the sample. Summing the W-Akaike weights across the sample is 1, and the optimal
model of the sample has the maximum (probability) value. The W-Akaike weights are captured in
Table 1.

Table 1. W-Akaike weights [unitless] as calculated from Akaike information criterion corrected (AICc)
values for models of annual SIE minimums. Entries in bold italics indicate the largest value, and hence
optimal model, amongst models examined.

Period Threshold Exponential Gompertz Log Quadratic Linear Linear w/lag

1979–2008 (first 30 years)

5 0.48 0.42 0.0009 0.094 0.0015 0.0053
15 0.49 0.41 0.00098 0.092 0.0016 0.0052
25 0.49 0.41 0.0015 0.099 0.0026 0.0056
35 0.48 0.40 0.0026 0.11 0.0044 0.0062
45 0.47 0.39 0.0038 0.12 0.0067 0.0068
55 0.46 0.38 0.0051 0.14 0.0089 0.0078

1979–2017 (all years)

5 0.19 0.26 0.069 0.32 0.086 0.076
15 0.19 0.26 0.077 0.31 0.099 0.068
25 0.19 0.26 0.084 0.30 0.11 0.057
35 0.19 0.27 0.085 0.29 0.11 0.047
45 0.20 0.28 0.084 0.29 0.11 0.042
55 0.20 0.27 0.091 0.28 0.12 0.040

1988–2017 (last 30 years)

5 0.13 0.14 0.13 0.14 0.44 0.011
15 0.13 0.14 0.13 0.13 0.44 0.011
25 0.13 0.14 0.13 0.13 0.45 0.0083
35 0.13 0.15 0.13 0.13 0.44 0.011
45 0.13 0.15 0.13 0.14 0.44 0.0084
55 0.13 0.15 0.13 0.13 0.45 0.011

According to the results in Table 1, threshold choice does not appear to impact the choice of
optimal model from the six examined. Regardless of threshold choice, the exponential model best fits
the first 30 years of data, the quadratic model best fits the full time series, and the linear model best fits
the last 30 years of data. That said, the probability of these choices does exhibit some change based on
threshold choice for several of the fitted domains. In particular, for the full time series (1979–2017) as
the threshold is increased the probability of quadratic being the optimal model decreases while the
probability of the linear model being optimal increases.

Table 2 summarizes the projected first ice-free Arctic summer year (FIASY) values from all six
models over the time period domains of the first 30 years, the full time series, and the last 30 years.
Figure 5 illustrates the impact of threshold, time period domain, and model choice on FIASY predictions.
The full results are available in the Appendix A as Table A2. In general, increasing the threshold
produces an earlier mean modeled FIASY with a slightly smaller spread between model estimates.
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Table 2. Metrics from six model projections of first ice-free Arctic summer year (FIASY). Minimum,
mean, and maximum are calculated as described in the methods. The standard deviation is rounded to
the nearest whole number.

Years Threshold Minimum Mean Maximum Std. Dev.

1979–2008

5 2013 2033 2073 23
15 2013 2032 2070 22
25 2014 2032 2067 21
35 2014 2031 2064 19
45 2014 2030 2062 19
55 2014 2030 2060 18

1979–2017

5 2034 2045 2063 10
15 2034 2044 2061 10
25 2034 2043 2059 9
35 2033 2041 2056 8
45 2032 2040 2054 8
55 2032 2039 2052 7

1988–2017

5 2044 2048 2054 4
15 2044 2048 2053 4
25 2043 2046 2052 4
35 2041 2044 2049 3
45 2039 2042 2047 3
55 2040 2042 2046 2
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In comparison to the similar study done by Peng et al. (2018), where a 15% threshold was used,
the models calibrated with the full time series and the last 30 year time periods result in FIASY estimates
that are slightly later and with smaller spreads in this analysis. The difference in this paper is that
the full time series is 1979–2017, rather than 1979–2015, and the last 30 years is 1988–2017, rather than
1986–2015. The addition of data from 2016 to 2017 appears to be the contributing factor to this change.

The time series of SIE annual maximums was also examined. Here, the optimal choice of
model based on W-Akaike weights was the linear model for every case studied. This includes the
three different time domains of calibration, the six different models, and thresholds between 5% and
55%. Figure 6 shows the fitted linear trends for the different time period domains as a function of
threshold. All slopes are negative, as indicated in Figure 6, meaning that the annual SIE maximum
has a decreasing trend for all cases. In general, as the threshold increases, the magnitude of the slope
decreases. Thus, using higher thresholds suggests the annual maximum is still decreasing over time,
but at a slower rate. The slope magnitude decrease with increasing threshold is more notable when
calibrating over the earlier part of the time series. That is, a choice of 55% threshold when fitting over
1979–2008 decreases the magnitude of the slope by 9600 km2/yr as compared to the 5% threshold,
while only 4600 km2/yr when fitting over the 1988–2017 time period.
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3.5. Sensitivity of the FIASY to SIC Threshold

The sensitivity of the FIASY estimates from the linear regression to the SIC thresholds is examined
using the SIE times series computed from the SIC threshold values of 5%, 15%, 25%, 35%, 45%,
and 55% for the last 30 years (1988–2017). The FIASY value ranges from 2053 for 5% to 2044 for
55%, with a spread of about 7 years (Figure 7). The downward linear decadal trends of Arctic SIE
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annual minimum are slightly lower with higher SIC thresholds. Due to the lower initial SIE values,
as indicated by the intercept, FIASY values are still relatively earlier, even if with slightly lower trends.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 17 
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Figure 7. Arctic annual minimum SIE time series (solid) for 1988–2017 and their linear regressions
(dashed) for varying SIC thresholds. The circles represent the initial positions (the 1988 value of the
trend line) of the linear regression (Intercept).

4. Conclusions

The purpose of this study was to answer: does the choice of threshold have an impact on Arctic
sea ice extent decadal trends? The answer is yes. We have demonstrated that assuming a threshold
choice as low as 30% can impact the timing of SIE annual minimums to occur in August instead of
September. The timing of SIE annual maximums is even more sensitive to threshold choice. We have
seen that when considering both SIE annual minimum and maximum values, threshold choice is
an important factor, more so in the case of minimums where changing the assumed threshold from
15% to 35% could change the magnitude by more than 10%. Monthly SIE data distributions are very
seasonally dependent. Although little impact was seen for threshold choice on data distributions
during annual minimum times (August and September), there is a strong impact in May.

When evaluating six possible statistical models of annual SIE minimums, threshold choice did
not affect optimal model selection; the temporal domain of fitting is the much more significant factor.
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But, the resultant FIASY estimate is impacted by threshold. Higher threshold choices produce earlier
FIASY estimates, and the more notable impact was that FIASY estimates amongst all considered
models were more consistent. Furthermore, annual SIE maximums are found to all be decreasing over
time regardless of threshold, but the higher thresholds suggest that the long-term trend of decrease is
slightly slower.

Notably, the impact of surface melt during the peak of melting season has been suggested by
this analysis. In Figure 8, we see that the slopes of the June time series are fairly different between
thresholds, as opposed to the September time series, where they were very close to each other (Figure 7).
In September, when SIE is at the annual minimum, it is uniformly cold throughout the region and
beginning to freeze, and therefore a surface melt bias is not prominent. However, June is near the peak
of the melt season when ice loss is rapidly occurring resulting in more SIC variability near the ice edge.
Surface melt is known to impose a negative bias on SIC values, meaning that the presence of surface
melt may cause PM SIC retrieval values to be artificially low. Therefore, surface melt could reduce the
SIC value to below the threshold used to define SIE. What we see in the June time series is that higher
thresholds are exhibiting a faster SIE depletion rate over time, through slopes of higher magnitude.
If surface melt is a significant factor that is increasing over time, we would see more cells with lower
SIC, meaning that lower thresholds would have an increasingly larger SIE. In turn, this would imply
that lower thresholds would have smaller slopes in SIE trends, but artificially so.

In summary, we have validated some obvious outcomes and also uncovered some unexpected
impacts of threshold choice on Arctic sea ice extent decadal trends. The more obvious conclusion
is that higher thresholds yield lower annual SIE minimums and in turn earlier FIASY estimates.
The unexpected outcomes of this threshold choice analysis include evidence about the impact of surface
melt. Surface melt is known to bias SIC, and thus SIE, lower. This comes to bear when evaluating
the timing of annual SIE minimums, where higher thresholds yield earlier annual minimum dates.
Further, during months of peak surface melt (e.g., June) threshold choice has more of an impact on the
distribution of SIE values (Figure 3). And finally, higher thresholds show faster SIE depletion rates
during the months of peak surface melt implying that the incidence of surface melt may be increasing
in time (Figure 8).

Given that the rapid Arctic sea ice depletion appears to have statistically changed SIE characteristics,
particularly in the summer months, a more extensive investigation to verify surface melt impacts
on this data set is warranted. This analysis has suggested that some of the threshold choice impacts
to SIE trends may actually be the result of biased data due to surface melt. Until the surface melt
is better characterized, and in turn the uncertainty on SIC is better understood, we do not know
the true impact of threshold choice to SIE trends as the accuracy of the SIE data itself is in question.
Currently, the strongest conclusion that can be made is that certain threshold choices appear to be more
sensitive to the impact of surface melt.
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Appendix A

Table A1. Results of the Kolmogorov–Smirnov tests, where entries are the threshold values where no
significant difference was found between distributions.

Threshold Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

5 5–20 5–20 5–15 5–15 5–15 5–15 5–20 5–20 5–35 5–20 5–15 5–15
10 5–20 5–20 5–20 5–15 5–15 5–20 5–20 5–20 5–35 5–25 5–20 5–15
15 5–25 5–25 5–25 5–25 5–20 5–25 5–25 5–25 5–40 5–30 5–25 5–25
20 5–30 5–30 10–30 15–30 15–25 10–30 5–30 5–35 5–45 5–35 10–35 15–30
25 15–35 15–35 15–30 15–35 20–30 15–35 15–30 15–40 5–45 10–40 15–40 15–35
30 20–40 20–40 20–40 20–40 25–35 20–40 20–35 20–45 5–50 15–50 20–45 20–45
35 25–45 25–45 30–45 25–45 30–40 25–45 30–40 20–50 5–55 20–50 20–50 25–45
40 30–50 30–50 30–50 30–50 35–45 30–50 35–50 25–55 15–60 25–55 25–55 30–55
45 35–55 35–55 35–55 35–55 40–50 35–55 40–55 30–55 20–65 30–60 30–55 30–55
50 40–55 40–55 40–60 40–60 45–55 40–60 40–55 35–60 30–70 30–65 35–60 40–65
55 45–60 45–60 45–65 45–65 50–65 45–65 45–60 40–65 35–70 40–65 40–65 40–65
60 55–65 55–65 50–70 50–70 55–70 50–70 55–65 50–70 40–75 45–70 50–70 50–75
65 60–70 60–70 55–70 55–75 55–70 55–70 60–70 55–75 45–80 50–75 55–75 50–75
70 65–75 65–75 60–75 60–75 60–75 60–75 65–75 60–75 50–85 60–80 60–80 60–80
75 70–80 70–80 70–80 65–80 70–75 70–80 70–80 65–80 60–85 65–85 65–85 60–80
80 75–85 75–85 75–85 75–85 80–85 75–80 75–85 75–85 65–85 70–85 70–85 70–85
85 80–85 80–85 80–85 80–85 80–85 85 80–85 80–85 70–85 75–85 75–85 80–85

Table A2. FIASY estimates for all examined models, time domains of calibration, and thresholds.
Entries in bold italics indicate the largest W-Akaike weight values, and hence optimal model, amongst
models examined (see weights in Table 1).

Period Threshold Exponential Gompertz Log Quadratic Linear Linear w/lag

1979–1998 (first 20 years)

5 2029 2039 2084 2038 >2100 >2100
15 2033 2044 2083 2041 >2100 2048
25 2036 2049 2086 2045 >2100 2051
35 2052 2069 2070 2059 >2100 2064
45 2068 2089 2082 2074 >2100 2084
55 >2100 >2100 2088 >2100 >2100 >2100

1979–2008 (first 30 years)

5 2013 2016 2049 2023 2073 2024
15 2013 2016 2048 2023 2070 2024
25 2014 2017 2046 2023 2067 2024
35 2014 2017 2045 2023 2064 2023
45 2014 2017 2044 2023 2062 2023
55 2014 2017 2043 2022 2060 2023

1981–2010
(climate normal)

5 2020 2024 2045 2026 2064 2027
15 2019 2024 2044 2026 2062 2026
25 2019 2023 2043 2025 2060 2026
35 2019 2023 2042 2024 2057 2025
45 2018 2022 2041 2024 2056 2024
55 2018 2022 2040 2024 2054 2024

1979–2017 (all years)

5 2034 2042 2046 2036 2063 2048
15 2034 2042 2045 2036 2061 2047
25 2034 2041 2044 2035 2059 2046
35 2033 2040 2043 2034 2056 2043
45 2032 2038 2041 2033 2054 2041
55 2032 2038 2040 2033 2052 2040

1988–2017 (last 30 years)

5 2045 2054 2046 2044 2053 2048
15 2045 2053 2046 2044 2052 2047
25 2044 2052 2045 2043 2050 2043
35 2042 2049 2042 2041 2048 2043
45 2040 2047 2041 2040 2046 2039
55 2040 2046 2041 2040 2044 2041

1998–2017 (last 20 years)

5 2048 2088 2047 >2100 2048 >2100
15 2047 2086 2047 >2100 2047 >2100
25 2046 2083 2046 >2100 2046 >2100
35 2045 2079 2045 >2100 2045 >2100
45 2044 2076 2043 >2100 2044 2042
55 2043 2074 2043 >2100 2043 2043
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